1	8	6	2	6	7	5	3
3	1	1	1	8	2	2	2
8	3	2	4	7	6	5	1
3	7	5	8	3	3	1	4
5	4	4	6	7	1	8	2
7	1	4	3	2	5	3	5
2	2	8	3	4	4	7	5
2	2	3	1	4	4	6	5

Let's solve a puzzle together.

1	8	6	2	6	7	5	3
(3)	1	1	1	8	2	2	2
8	3	2	4	7	6	5	1
3	7	5	8	3	3	1	4
5	4	4	6	7	1	8	2
7	1	4	3	2	5	3	5
2	2	8	3	4	4	7	5
2	2	3	1	4	4	6	5

1	8	6	2	6	7	5	3
3	1	1	1	8	2	2	2
8	3	2	4	7	6	5	1
3	7	5	8	3	3	1	4
5	4	4	6	7	1	8	2
7	1	4	3	2	5	3	5
2$)$	2	8	3	4	4	7	5
2	(2)	3	1	4	4	6	5

1	6	6	(2)	6	7
5					

(3) 1 (1) 1 (8) 2 (2) 2
(8)(3) 2 (4) 7 (6) 5 (1)

3 (7) 5 8 $8 \cdot 3$
(5) 4 4 4 (6) 7×1 (7) (4) 3 (2) 5 (3) 5
(2) 2 (8)(3) 443 (5)

2 (2) 3 1 1 4 4 (6) 5
1(8) 6 (2) 67 (5)(3)
(3) 1 (1) 1 (8) 2 (2) 2
(8)(3) 2 (4) 7 (6) 5

3 (7) 5×8
(5) 4 4 4 (6) 7×1
(7) (1) (4) 3 (2) 5 (3) 5
(2) 2 (8)(3) 44 (7) 5

2 (2)(3) 14 | 4 |
| :--- |

1	8	6	2	6	7	5	3
3	1	1	1	8	2	2	2
8	3	2	4	7	6	5	1
3	7	5	8	3	3	1	4
5	4	4	6	7	1	8	2
7	1	4	3	2	5	3	5
2	2	8	3	4	4	7	5
2	2	3	1	4	4	6	5

Three digits in a line is a good place to start. Remember: black cells can't be joined. There's only one way to black out two of the digits without having two joined black cells. Cells bordering the black cells cannot be black. Circle these, so you'll remember they must be white. Using this technique, you can

Look at the block of 2 s in the corner. Remember: black cells cannot be connected. White cells must be connected. White cells must not be isolated.

See the ringed 3 in row seven. As it's white, the other 3 in the row must be black. Similarly, in the first column, the unmarked 3 must be black. (You can work this one out another way. Look at the unmarked 3 in the first column. If this is white, the other two 3 s in the same row would both have to be black. They're adjacent. Black cells can't be joined. So we know the 3 in the first

If the 5 in the top row was black, the 3 in the corner would be isolated. So the 5 must be white. There's a similar situation with the 3 in the bottom row, the 7 in the first column and the 7 in the eighth column.

One of the 7 s in column 5 must be black. This means the 3 sandwiched between them must be white (or it would be touching a black cell).

Using these techniques, you will arrive at the answer.

